Elastomers in bioprocessing
EPDM gaskets – What debate?

A technical presentation
by
James Walker & Co Ltd
(First presented at the International Society of Pharmaceutical Engineering conference November 2011)
Outline

BioPharm Sealing Issues

Rubber Technology

Seal Manufacture

Material Development and Testing

Seal Performance
Concerns of Biopharm

Process, economic and regulatory conditions require a high level of demand for:

- Full Traceability
- Repeatability
- Consistent Quality

Pressures to reduce Cost of Goods Sold creating a greater demand for:

- Increased preventative maintenance intervals.
- Increasing throughput or yield.
- Reducing failures and deviations.
Elastomeric Seals in Biopharm

Widely used in conventional bioprocess systems.

- Provides means of connecting a variety of process components.
- Often defines the sterile boundary of the process.
- Prevents environmental contamination.

Common Elastomeric Seals

- Hygienic clamp gaskets (i.e. TriClamp®) for pipe connections.
- Orings on tank manways, pumps and other process components.
- Diaphragms in weir style valves.
Common Issues with Seals

• Typically the *weak link* compared to stainless steel in most processes.

 • Loss of process integrity due to seal failure, sometimes managed through retightening practices.
 • Difficulty cleaning due to excessive intrusion into the bore and surface roughness.
 • Excessive adhesion to stainless steel often resulting in equipment damage, operator injury or tedious change out practices.
 • Marginal performance in common industry fluids and clean steam.
 • Industrial manufacturing process often without robust systems, inspections and change control procedures.
 • Inconsistent service life.
 • Lack of process and ingredient traceability.
 • Potential contamination of drug product or process utilities.
Root Cause of Elastomer Issues

• Seal design and materials are based on requirements for Food & Dairy or Chemical Process Industry (CPI).
 • Lower demands on purity.
 • Lower or no requirements for traceability.
 • Less rigorous sanitization and sterilizing requirements.

• Economics working against the true need.
 • Relative low volume of elastomer requires most seal manufacturers to acquire “off the shelf” compounds optimized for molding throughput and wide range of sealing applications.
 • Commodity status of seals requires constant lowering of price to maintain competitiveness often at the expense of performance.
To properly understand effective solutions, a basic knowledge of elastomers is required.

A rough guide …
EPDM Compounding

Polymer
Fillers
 (black and non-black)
Plasticisers
Processing Aids
Cure System
Antioxidants
UV stabilisers
Ozone resistance
Mixing: An Internal Mixer

- Feed
- Casing - cored for heating/cooling
- Ram
- Rotors
- Mixing chamber
- Discharge door
Infinite Possibilities

Hardness 40 to 90 IRHD

Tensile strength <5 to >15 MPa

Compression set (24 hrs at 100°C) 5 to 40%
All EPDM Materials are not the same!!
Extrusion
Compression Moulding
Injection Moulding

Vertical and Horizontal
Rubber Cure

James Walker

Rheometer Test

<table>
<thead>
<tr>
<th>Instrument Type</th>
<th>Compound</th>
<th>Method</th>
<th>Test Length</th>
<th>Temperature</th>
<th>Arc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument3</td>
<td>ELASTOMER EPDM BLACK</td>
<td>Method</td>
<td>6.00 mins</td>
<td>185.00°C</td>
<td>0.5°</td>
</tr>
</tbody>
</table>

© Copyright 2010 International Society for Pharmaceutical Engineering
Clean Room

Cleanroom validated to ISO Class 7 (Class 10,000)
Testing of Elastomers

Hardness
Tensile strength / E at B / modulus
Tear resistance
Compressive stress / strain properties
Compression set or compression stress relaxation (CSR) testing at various temperatures
Immersion testing over wide temperature range
Low temperature flexibility
Abrasion testing
Performance of the final compound depends on selection of the specific type and grade of all ingredients as well as the compounding and moulding process.
Customer Specification

“Black EPDM – USP Class VI Compliant”
What does this tell us?

Biocompatibility

NO indication of how elastomer will function as a seal
Seal Requirements

USP Class VI compliant

FDA compliant

Animal Derived Ingredients Free (ADIF)

Application Specific
Elastomer Selection

Temperature

Media

Mechanical operating conditions

‘Special’ requirements

Cost
A 75 hardness EPDM elastomer specifically designed for the bioprocessing industry

“Clean” ingredients only, all ADIF

Full traceability of all ingredients
EPDM

<table>
<thead>
<tr>
<th>Property</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardness</td>
<td>IRHD</td>
<td>76</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>psi (MPa)</td>
<td>2378 (16.4)</td>
</tr>
<tr>
<td>Elongation at break</td>
<td>%</td>
<td>130</td>
</tr>
<tr>
<td>Compression Set 168 hours at 100°C</td>
<td>%</td>
<td>6.0</td>
</tr>
<tr>
<td>Compression Set 168 hours at 125°C</td>
<td>%</td>
<td>11.4</td>
</tr>
</tbody>
</table>
Compression Stress Relaxation

- Minimal intrusion
- No re-torque
Total Organic Carbon USP <381>

<table>
<thead>
<tr>
<th>Sample</th>
<th>TOC (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPDM A</td>
<td>61.2</td>
</tr>
<tr>
<td>EPDM B</td>
<td>119</td>
</tr>
<tr>
<td>EPDM C</td>
<td>138</td>
</tr>
<tr>
<td>EPDM D</td>
<td>139</td>
</tr>
</tbody>
</table>
CIP 100*

<table>
<thead>
<tr>
<th></th>
<th>4 Weeks at 140 F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume Change (%)</td>
<td>+ 2.6</td>
</tr>
<tr>
<td>Change in Tensile Strength (%)</td>
<td>- 9.7</td>
</tr>
<tr>
<td>Change in Elongation at break (%)</td>
<td>- 7</td>
</tr>
<tr>
<td>Change in hardness (IRHD)</td>
<td>- 2</td>
</tr>
</tbody>
</table>

(* Manufactured by Steris — based on potassium hydroxide. CIP 100® is a registered trademark of Steris Corporation.)
EPDM

50% less TOC extractables than typical EPDM.

Low adhesion to stainless steel after thermal cycling.

Biocompatibility tested via USP Class VI <87> and <88>.

Compatibility tested with common industry chemicals.

Extremely low compression set (~6%) for long term sealability without retightening.
Intrusion
Intrusion for 1” Hygienic Seal

Intrusion (mm)

Applied Load (Nm)
Intrusion for 1" Hygienic Seal

Position

1
2
3
4

Intrusion (mm)

Clamp Number

0
1
2
3
4

-0.18
-0.14
-0.1
-0.06
-0.02
0.02
0.06
Intrusion

![Graph showing intrusion (mm) vs applied load (Nm)]
Claiming and Proving Performance

Steam cycle tested per ASME BPE-2009, Appendix J

- Steam Hold
 - Saturated Clean Steam, >130 C for 1 hour
 - Cool to <25 C with CDA and repeat.

- Analysis
 - Pressure hold before/after required cycles.
 - Visual Inspection - Damage, adhesion, etc.
 - Intrusion Measurement
 - Measurement of weight change.
Intrusion

- Pressure hold passed before and after each round of testing.
 - 45 PSIG, 1 hr, <0.5 PSI loss.
- No cracks, tears or other deformation observed.
- Clean removal from all ferules with minimal adhesion.
- Intrusion
 - All sizes Cat I compliant initially.
 - Excellent performance over time.
- Negligible change in weight.

<table>
<thead>
<tr>
<th>Size</th>
<th>Initial</th>
<th>100 Cycles</th>
<th>500 Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Intrusion</td>
<td></td>
</tr>
<tr>
<td>1/2</td>
<td>0.11 mm</td>
<td>0.29 mm</td>
<td>Not Tested</td>
</tr>
<tr>
<td>3/4</td>
<td>0.14 mm</td>
<td>0.45 mm</td>
<td>Not Tested</td>
</tr>
<tr>
<td>1"</td>
<td>-0.17 mm</td>
<td>0.49 mm</td>
<td>0.60 mm</td>
</tr>
<tr>
<td>1-1/2</td>
<td>-0.36 mm</td>
<td>-0.57 mm</td>
<td>Not Tested</td>
</tr>
<tr>
<td>2</td>
<td>-0.54 mm</td>
<td>-0.67 mm</td>
<td>Not Tested</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Weight Change (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1"</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>-0.10%</td>
</tr>
<tr>
<td></td>
<td>-0.17%</td>
</tr>
</tbody>
</table>
Summary

- Material designed to meet the needs for the industry and fully tested to confirm desired results.
 - Longer service life allowing for extended PM cycles.
 - Minimal adhesion to stainless steel for easier, safer change outs.
 - Low intrusion for predictable cleanability over time.
 - Engineered compatibility with common cleaning materials, process fluids and steam.
 - High purity material with lower TOC.

- Highly controlled manufacturing process with well identified chain of custody.
 - Reduced risk of failure due to consistent product quality.
 - Data and expertise to support deviation investigations.
 - Full traceability to the raw ingredients and manufacturing process.

- Biopharmaceutical industry concerns and issues addressed.
James Walker worldwide sales and customer support

James Walker Asia Pacific
Tel: +65 6777 9896
Fax: +65 6777 6102
Email: sales.sg@jameswalker.biz

James Walker Australia
Tel: +61 (0)2 9721 9500
Fax: +61 (0)2 9721 9580
Email: sales.au@jameswalker.biz

James Walker Benelux
(Belgium)
Tel: +32 3 820 7900
Fax: +32 3 828 5484
Email: sales.be@jameswalker.biz
(Netherlands)
Tel: +31 (0)186 633111
Fax: +31 (0)186 633110
Email: sales.nl@jameswalker.biz

James Walker Brasil
Tel: +55 11 4392 7360
Fax: +55 11 4392 5976
Email: sales.br@jameswalker.biz

James Walker China
Tel: +86 21 6876 9351
Fax: +86 21 6876 9352
Email: sales.cn@jameswalker.biz

James Walker Deutschland
Tel: +49 (0)40 386 0810
Fax: +49 (0)40 389 3230
Email: sales.de@jameswalker.biz

James Walker France
Tel: +33 (0)437 497 480
Fax: +33 (0)437 497 483
Email: sales.fr@jameswalker.biz

James Walker Iberica
Tel: +34 94 447 0099
Fax: +34 94 447 1077
Email: sales.es@jameswalker.biz

James Walker Inmarco (India)
Tel: +91 (0)22 4080 8080
Fax: +91 (0)22 2859 6220
Email: info@jwinmarco.com

James Walker Italy
Tel: +39 02 257 8308
Fax: +39 02 263 00487
Email: sales.it@jameswalker.biz

James Walker Mfg (USA)
Tel: +1 708 754 4020
Fax: +1 708 754 4058
Email: sales.jwmfg.us@jameswalker.biz

James Walker New Zealand
Tel: +64 (0)9 272 1599
Fax: +64 (0)9 272 3061
Email: sales.nz@jameswalker.biz

James Walker Oil & Gas (USA)
Tel: +1 281 875 0002
Fax: +1 281 875 0188
Email: oilandgas@jameswalker.biz

James Walker Norge
Tel: +47 22 706800
Fax: +47 22 706801
Email: sales.no@jameswalker.biz

James Walker Oil & Gas (USA)
Tel: +1 281 875 0002
Fax: +1 281 875 0188
Email: oilandgas@jameswalker.biz

James Walker South Africa
Tel: +27 (0)31 304 0770
Fax: +27 (0)31 304 0791
Email: sales.za@jameswalker.biz

James Walker UK
Tel: +44 (0)1270 536000
Fax: +44 (0)1270 536100
Email: sales.uk@jameswalker.biz

This work is protected by copyright laws and treaties around the world. All such rights are reserved. © James Walker 2012

You may print off one copy, and may download extracts, of any page(s) from our site for your personal reference and you may draw the attention of others
within your organization to material posted on our site. You must not modify the paper or digital copies of any materials you have printed off or
downloaded in any way, and you must not use any illustrations, photographs, video or audio sequences or any graphics separately from any accompanying
text. You must not use any part of the materials on our site for commercial purposes without obtaining a licence to do so from us or our licensors.

Our status (and that of any identified contributors) as the authors of material on our site must always be acknowledged.

This information is based on our general experience, but because of factors which are outside our knowledge and control, no warranty is given or is to be
implied with respect to such information. If any doubt exists, please seek advice from James Walker.