Shieldseal® elastomers for use with ionising radiation

Complete family of high performance materials

- **Shieldseal® 600 series** of radiation resistant elastomers
- **Shieldseal® 500 series** of radiation shielding elastomers
Introduction
Only the highest quality sealing products, materials, services and technical advice are provided by James Walker to the nuclear sector and other users of ionising radiation.

With over 30 years of service to these industry areas, our client base now covers:

· Nuclear power generation.
· Nuclear fuel processing and handling.
· Nuclear fuel transport.
· Defence equipment.
· Medical equipment.
· Industrial equipment.

This document provides an overview of the most popular Shieldseal® 600 and 500 series elastomeric materials and products for applications with ionising radiation.

The capability we have developed for our many clients in these specialised sectors includes an extensive range of liquid and gas sealing products, on-site and off-site technical advice, full technical support, and product training.

Confidentiality
Much of our high-level work on special materials and customised products for use with ionising radiation is confidential. We are accustomed to operating under these conditions and fully respect the security issues involved.

We therefore gratefully acknowledge the permissions granted by numerous clients to publish the technical data on our materials that were derived from independent evaluation tests performed on their specific items.

Contents
P3 Quality production and inspection. Quality standards.

P4 Shieldseal® 600 radiation resistant elastomers. Ethylene-propylene (EPDM) based Shieldseal materials.

P5 Fluoroelastomer (FKM) based Shieldseal material. Nitrile (NBR) based Shieldseal material. Other elastomers.

P6 Shieldseal® 500 radiation shielding elastomers.

P7 Services to users of ionising radiation. Trademark acknowledgements. Information.
Shieldseal® elastomers for use with ionising radiation

Top quality production and inspection regimes

James Walker’s Materials Technology Centre at Cockermouth, Cumbria, contains one of the world’s most advanced elastomer research, test and prototyping facilities. It also houses our fully automated state-of-the-art internal mixer for the full scale precision compounding for over 300 of our elastomer grades.

Quality elastomer compounding

Every batch of elastomer we compound in-house is assigned a unique number. This, together with the strict quality control test regime of our materials laboratory, gives complete batch traceability.

Batches are subjected to rigorous testing before being converted into a final product or component using a variety of the most advanced manufacturing techniques.

The post-curing of silicone and fluorocarbon elastomers is also under microprocessor control for temperature level and time. Each post-cure cycle is trace recorded as a vital link in our quality chain.

Flexible manufacturing

Our range of production techniques and plant provides us with total flexibility of manufacture.

This enables us to select precisely the correct production route for each of the vastly different types, sizes and quantities of elastomeric items that our clients want.

Our in-house production facilities include:

- Compression moulding up to 2.2m diameter.
- Vacuum moulding up to 2.1m diameter.
- Pull-through techniques allowing larger moulded diameters.
- Transfer moulding.
- Injection moulding.
- Extrusion process — with elastomers supplied in length form or as mould-joined rings.
- Rubber-to-metal bonding, with acid etch and phosphating of metal surfaces.
- CNC centre for machining of elastomer, polyurethane and engineering plastics.
- Elastomer impregnation of fabrics and fibres for composite materials.

Quality standards

Our quality standards are third-party registered to BS EN ISO 9001:2000. We are also regularly assessed and quality approved by a wide range of industry bodies and individual clients including multinational corporations, utilities and government organisations.

In addition, we hold test equipment for all relevant BS, ISO, ASA, API, ANSI, DIN, DTD and NATO standards. Certificates of conformity are supplied on request. Packaging and labelling is available to individual specifications.

To order or get further details, please call your local contact shown on rear cover or visit www.jameswalker.biz
This family of fully developed, tested and industry-proven materials provides

- Excellent compression set resistance.
- Resistance to high levels of radiation.
- Long service life.
- Excellent value for money.

Our Shieldseal® 600 radiation resistant elastomers have been evaluated for resistance to ionising radiation by monitoring changes in important physical properties over time while irradiated with gamma radiation.

This work was carried out jointly by independent test house Centronic Raditec and James Walker Technology Centre.

On this and the following page, we show abbreviated results of customer specific tests for radiation resistance.

Further information is available on each material.

Ethylene-propylene (EPDM) based materials

Specially developed materials based on ethylene-propylene are highly regarded by the nuclear industry for their many invaluable features, including:

- Outstanding radiation resistance.
- Excellent resistance to a wide range of chemicals.
- Resistance to aging.
- Exceptional low temperature flexibility.
- Economical price.

Our EPDM elastomers are formulated to have very low levels of ions such as Cl⁻ and SO₄²⁻ that can leach from materials to promote metalwork corrosion within a nuclear reactor.

Our two leading grades of EPDM-based materials with radiation resistance are designated Shieldseal 661 and 662.

Shieldseal® 662

Description

Shieldseal 662 is a medium-hard grade of EPDM-based elastomer, developed for general applications where ionising radiation is present.

Operational properties

- **Hardness:** 70 IRHD
- **Compression set:** 64%, when irradiated with a total dose of 1MGray at RT.
- **Compression set:** 27%, when irradiated with a total dose of 80kGray at 90°C.

![long_term_irradiation_test](image)

Shieldseal® 662 Compression Set (%) v. Radiation Dose (kGray)

at room temperature and 505 Gray/hour

![comprison_set_661](image)

Shieldseal® 661 Compression Set (%) v. Radiation Dose (kGray)

at 40°C and 130 Gray/hour

For use in static applications where superior compression ser properties are an advantage.

Operational properties

- **Hardness:** 50 IRHD
- **Compression set:** 35%, when irradiated for 680 hours at a dose rate of 130Gray.h⁻¹ (total dose 88kGray) at 40°C.

To order or get further details, please call your local contact shown on rear cover or visit www.jameswalker.biz
Fluoroelastomer (FKM) based material

Shieldseal® 641

Description
Shieldseal 641 is a soft grade of fluoroelastomer (FKM) with excellent radiation resistance and enhanced high temperature capability. It offers outstanding resistance to a wide range of chemicals, as well as sunlight, ozone and atmospheric aging.

Operational properties
- **Hardness:** 55 IRHD
- **Temperature range:** -18°C to +200°C.
- **Compression set:** 44%, when irradiated for 680 hours at 130 Gray/h (total dose 88 kGray) at 40°C.

Nitrile (NBR) based material

Shieldseal® 621

Description
Shieldseal 621 is a medium-soft grade of acrylonitrile-butadiene (NBR) formulated for radiation resistance. It offers excellent resistance to mineral oils, hydraulic fluids — including water/glycol grades — and a wide range of chemicals.

Operational properties
- **Hardness:** 60 IRHD
- **Compression set:** 18%, when irradiated with a total dose of 100 kGray at 65°C.

Other elastomers

When selecting an elastomer for duties with ionising radiation, it is important to consider other factors in addition to radiation resistance. For example, the elastomer should also be evaluated for physical, chemical and temperature performance in the operational environment.

In addition to the materials detailed in this document, James Walker offers an extensive range of elastomeric compounds for evaluation by nuclear industry clients. These include compounds based on:
- Polychloroprene (CR), e.g., Neoprene.
- Polyurethane (AU/EU).
- Silicone (VMQ).
- Aflas® tetrafluoroethylene-propylene (TFE/P).
- Kalrez® perfluoroelastomer (FFPM).
James Walker has developed two flexible Shieldseal® 500 materials for the shielding of X-ray and gamma radiation. These lead-free elastomer based materials contain specially formulated metallic fillers evenly dispersed throughout their structure. Each elastomer base has been selected for radiation resistance to ensure long service life.

Applications

Shieldseal 500 materials are designed for applications where a resilient rubber-based flexible seal is required to prevent shine paths in active areas.

A major advantage of these elastomeric materials compared to traditional filled PVC grades is their ability to maintain long term sealing forces. The flexibility of Shieldseal 500 materials makes them ideal for door seals and flange joints.

In sheet and strip form, Shieldseal 500 materials are easily folded, bent and draped, making them ideal for pipe wrapping.

Their flexibility is also a significant benefit in the manufacture of protective garments such as gloves and aprons.

Efficiency data

Evaluation work was carried out by independent test house Centronic Raditec. Separate literature is available containing full details of the tests.

How supplied

Our Shieldseal 500 materials are supplied as ‘O’ rings, custom mouldings, simple extrusions, and in sheets and strips of various sizes and thicknesses.

Attenuation properties for specific applications can be customised within certain constraints to meet the needs of specialised applications, i.e. to give a thickness of 1.8mm of Shieldseal for the equivalent of 1mm lead.

Shieldseal® 551

Description

Shieldseal 551 is a flexible material for radiation shielding duties, based on a polychloroprene (CR) elastomer.

Hardness: 70 IRHD

Shielding efficiency: 2.4mm of Shieldseal 551 has the same shielding efficiency as 1mm of lead.

In sheet and strip form, Shieldseal 500 materials are supplied as 'O' rings, custom mouldings, simple extrusions, and in sheets and strips of various sizes and thicknesses.

Shieldseal® 561

Description

Shieldseal 561 is a flexible material for radiation shielding duties, based on an ethylene-propylene (EPDM) elastomer.

Hardness: 70 IRHD

Shielding efficiency: 2.4mm of Shieldseal 561 has the same shielding efficiency as 1mm of lead.
James Walker works constantly at the forefront of materials science and fluid sealing technology to create engineered solutions to industry’s problems.

We claim unrivalled experience in the design, development and manufacture of general and high performance elastomers. In these areas, the in-house expertise of James Walker Technology Centre is backed by academic bodies, technological centres of excellence and commercial laboratories.

For over 30 years we have applied our expertise in specialised elastomers to the nuclear sector. We have also developed and supplied elastomer-based EMC shielding materials to the defence and communications industries for 20 years.

Our Technical Services Team and nuclear industry specialists are readily available to discuss ionising radiation applications for elastomers, and are able to provide relevant documentation on request.

We are willing to partner with equipment manufacturers and end-users of radiation resistant and shielding elastomers to develop, prototype and evaluate materials and/or specific components for custom applications.

Please contact:
Technical Services Team
James Walker & Co Ltd
1 Millennium Gate, Westmere Drive
Crewe, Cheshire CW1 6AY, UK
Tel: +44 (0)1270 536145
Fax: +44 (0)1270 536100
Email: technical.crewe@jameswalker.biz

Trademark acknowledgements

James Walker acknowledges the following trademarks as mentioned in this document. All other names bearing the ® symbol are registered trademarks of James Walker.

Aflas® Asahi Glass
Kalrez® DuPont Performance Elastomers.

Information

Information in this publication and otherwise supplied to users is based on our general experience and is given in good faith, but because of factors which are outside our knowledge and control and affect the use of products, no warranty is given or is to be implied with respect to such information. Specifications are subject to change without notice. Statements of operating limits quoted in this publication are not an indication that these values can be applied simultaneously. Material Safety Data Sheets (MSDS) are available on request.